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As compared to the two-fluid single-pressure model, the two-fluid seven-equation two-pressure model has been proved to be
unconditionally well-posed in all situations, thus existing with a wide range of industrial applications. The classical 1st-order
upwind scheme is widely used in existing nuclear system analysis codes such as RELAP5, CATHARE, and TRACE. However,
the 1st-order upwind scheme possesses issues of serious numerical diffusion and high truncation error, thus giving rise to the
challenge of accurately modeling many nuclear thermal-hydraulics problems such as long term transients. In this paper, a semi-
implicit algorithm based on the finite volume method with staggered grids is developed to solve such advanced well-posed two-
pressuremodel. To overcome the challenge from 1st-order upwind scheme, eight high-resolution total variation diminishing (TVD)
schemes are implemented in such algorithm to improve spatial accuracy. Then the semi-implicit algorithm with high-resolution
TVD schemes is validated on the water faucet test. The numerical results show that the high-resolution semi-implicit algorithm is
robust in solving the two-pressure two-fluid two-phase flow model; Superbee scheme and Koren scheme give two highest levels of
accuracy while Minmod scheme is the worst one among the eight TVD schemes.

1. Introduction

In many industrial applications especially in nuclear indus-
tries, two-phase flows exist widely and are themost important
phenomenon. Accurate calculation of two-fluid flows is a
subject of intense interest and of great importance in research
topics. There are many important models in literature for
describing two-phase flows. Herein, the two-fluid six-equa-
tion model seems to be the most complete approximation
for two-phase flows. Hence, current main reactor thermal-
hydraulics analysis codes such as RALAP5, TRACE, TRAC,
and CATHARE are all based on such six-equation model.

However, due to an instantaneous equilibrium pressure
assumption, such six-equation model has been proved to be
ill-posed, which means that the initial value problem of the
six-equation system is nonhyperbolic and could leadtonumer-
ical oscillations. From the book of De Bertodano et al. [1],

which is of great reference value for investigating the sta-
bility of two-fluid model, the oscillations are caused by
the Kelvin–Helmholtz instability (KH). When the relative
velocity exceeds the Kelvin–Helmholtz instability criterion,
the oscillations occur. In this book, De Bertodano et al. [1]
show how the KH instability behaves in horizontal stratified
flow for a well-posed fixed-flux model with surface tension
compared to an ill-posed onewithout surface tension. For the
well-posed model, the short-wavelength ripples die out and
the large wave grows with time while for the ill-posed model
the short-wavelength has a larger growth rate and dominates
the solution after a short time.

For simulating complicated two-phase flow phenomenon
of many nuclear power plant accidents, the ill-posedness of
the differential equations presents a problem for higher order
numerical methods or finer grids. Phasic vapor/liquid veloc-
ities are generally different, especially in the (fast) transients
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of nuclear power plant accidents where two-phase flow phe-
nomenon is very complicated and phasic relative velocitymay
exceed Kelvin–Helmholtz criterion. To overcome the ill-
posed issue of two-fluid single-pressure model and obtain
well-posed numerical model, there are three important ideas:
implementation of the interfacial pressure term used in
CATHARE [2], implementation of the virtual mass force
term used in RELAP5 [3], and application of the two-
pressure model. The interfacial pressure differential term
and the virtual mass force differential term are adding to
phasic momentum equations to restore the hyperbolicity.
The present authors investigated the ill-posed characteristic
and analyze ill-posed regions of the two-fluid single-pressure
model and the effect of the virtual mass force and the interfa-
cial pressure on improving the ill-posedness [4]. The results
showed that such two-fluid six-equation single-pressure
model cannot completely avoid the ill-posedness with the
virtual mass force and the interfacial pressure, only the two-
fluid two-pressure model in which each phase is assumed
to have its own pressure is a well-posed model in all situa-
tions.

Many researchers carried out the study of two-pressure
model due to the well-posed advantage since 1976. The
most important two-pressure model is the two-fluid seven-
equation model to which much attention has been devoted
[5–14]. Such seven-equation two-pressure model consists of
two mass conservation equations, two momentum conser-
vation equations, two energy conservation equations, and a
volume fraction transport equation. Using the volume frac-
tion propagation as a basic conservation equation is widely
used because it changes the structure of conservation equa-
tion system and makes seven-equation model uncondi-
tionally hyperbolic (well-posed) in the sense of Hadamard
[15]. In recent years, the development of advanced thermal-
hydraulics system analysis codes has aroused great interest
such as RELAP-7 [16], NEPTUNE project [17], CASL [18],
and CATHARE-3 [19]. RELAP7 code developed by the Idaho
National Laboratory is ongoing now. It should be noted that
RELAP7 code is based on such seven-equation model.

In the last few decades, a volume of work has been con-
ducted on the numerical computation of this seven-equation
two-pressure model. Liang et al. [20] and Zein et al. [21]
presented the operator splitting approach to decompose the
seven-equation model into the hyperbolic operator and the
relaxation operators. They used Godunov scheme with the
HLLC flux to gain the numerical scheme for solving such
seven-equationmodel. Gallouët et al. [22] proposed twofinite
volume methods based on Rusanov scheme and Godunov
scheme to solve such two-pressure model. The source terms
such as relaxation terms, the phase change, and gravity were
calculated by a fractional step approach in his scheme.
Ambroso et al. [23] constructed a new approximate Riemann
solver for the numerical approximation of the seven-equation
model. Berry et al. [6] and Abgrall and Saurel [24] devel-
oped the discrete equation method (DEM) with a HLLC
scheme to solve the seven-equation model. They analyzed
two pressure relaxation cases: infinitely fast and bounded
with a realistic specific interfacial area. Moreover, Berry et al.
took into account the interphase heat and mass transfer

in this two-pressure model. The semi-implicit method with
the staggered grid mesh is widely used in existing reactor
thermal-hydraulics analysis codes (RELAP5, TRAC, TRACE,
etc.) due to the advantage of high efficiency and stability.
However, there is little information about the semi-implicit
scheme to solve the seven-equation two-pressure model in
existing public literature. Consequently, more investigations
are essential to studying the semi-implicit algorithm for
solving such two-pressure model.

In addition to great interest in the development and
simulation of advanced two-fluidmodel, high-order accuracy
schemes have also attracted great increasing attention. Many
current reactor thermal-hydraulics codes like RELAP5 and
CATHARE were developed based on classical first-order
upwind scheme. Using such low-order scheme to make the
convection terms of conservation equations discrete pro-
duces excessive numerical diffusion. This disadvantage has
been realized in many nuclear thermal-hydraulics appli-
cations such as hydraulic load analysis of loss of coolant
accident [25], long term transient natural circulation flow [26,
27], flow instability [28] or stability analysis [29], and boron
solute transport [30]. In the past, there are many classical
linear schemes like central-difference scheme (CD), QUICK,
third-order upwind scheme (TOU), Fromm scheme [31], and
second-order upwind scheme (SOU) to reduce high numer-
ical diffusion [32]. These linear schemes are at least of 2nd-
order accuracy and they are unbounded. However, Godunov
[33] proved that linear unbounded high-order schemes are
not mathematically monotonic as compared to 1st-order
upwind scheme, allowing unphysical oscillations under some
circumstances. Only bounded nonlinear high-order schemes
can be monotone and stable. Nonlinear flux limiter schemes
which fulfill total variation diminishing (TVD) criteria are
one of the most effective methods to achieve high-order
accuracy and stability andmany researchers have investigated
these nonlinear flux limiters. Tiselj and Petelin [34] devel-
oped the PDE2 code based on the six-equation model with
flux limiter Minmod in achieving second-order accuracy.
Wang et al. [29] have implemented high-resolution flux
limiters into TRACE code to improve spatial accuracy of con-
vection terms inmass/energy equations and the performance
of six nonlinear flux limiters was assessed.Wang et al. [35, 36]
also used Lax-Wendroff (L-W) scheme with flux limiters to
achieve the 2nd-order accuracy for both spatial discretization
and time integration and added the ENO limiter scheme
into TRACE for BWR stability analysis. Abu Saleem et al.
[37] developed a new flux limiter based on a combination of
1st-order upwind scheme and 3rd-order QUICK scheme to
achieve high-resolution of the solver for the two-phase single-
pressure model. Zou et al. [30] adapted an existing high-
resolution spatial discretization scheme to reduce numerical
errors. In his work, the high-resolution scheme was applied
for the mass and momentum equations only, and energy
equations were neglected. In all the work mentioned above,
the high-order schemes are performed for two-fluid six-equa-
tion single-pressure model only; few studies have been done
on implementing high-resolution scheme in solving two-
pressure model.
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In the presentwork, a semi-implicit algorithmusing high-
resolution TVD schemes is derived to calculate the two-pres-
sure model. The accuracy and robustness of the proposed
numerical scheme are validated with the water faucet
benchmark test. Eight high-resolution flux limiter schemes,
Minmod [38], Superbee [39], Harmonic [40], OSPRE [41],
Van Albada [42], SMART [43], Koren [44], and MUSCL
[45], are implemented to evaluate the performance of their
accuracy. Consequently, this research will potentially lay
the foundation for simulating two-phase flows based on
the two-pressure model with higher fidelity algorithm. This
paper is organized as follows. Section 2 introduces two-fluid
two-pressure mathematical model. The numerical algorithm
using high-resolution TVD scheme for solving this model
is described in Section 3. Next, the validation test for the
proposed scheme is presented in Section 4. At last, Section 5
is devoted to the conclusion.

2. Two-Fluid Two-Pressure
Mathematical Model

In nuclear industries, the one-dimensional form of two-fluid
model is more economical and used widely. The two-fluid
seven-equation two-pressure model used in this paper is
summarized as follows [16, 22, 23, 46], which allows for a
change of the pipeline cross section [34].

𝜕𝜕𝑡 (𝛼𝑔𝜌𝑔) + 1𝐴 𝜕𝜕𝑥 (𝛼𝑔𝜌𝑔V𝑔𝐴) = Γ𝑔, (1)

𝜕𝜕𝑡 (𝛼𝑓𝜌𝑓) + 1𝐴 𝜕𝜕𝑥 (𝛼𝑓𝜌𝑓V𝑓𝐴) = −Γ𝑔, (2)

𝜕𝜕𝑡 (𝛼𝑔𝜌𝑔V𝑔𝐴) + 𝜕𝜕𝑥 (𝛼𝑔𝜌𝑔V2𝑔𝐴) = −𝛼𝑔𝐴𝜕𝑃𝑔𝜕𝑥
+ (𝑃int − 𝑃𝑔)𝐴𝜕𝛼𝑔𝜕𝑥 + 𝛼𝑔𝜌𝑔𝑔𝑥𝐴 + Γ𝑔Vint𝐴
− 18𝜌𝑐𝐶𝑖𝐷𝐴 int (V𝑔 − V𝑓) V𝑔 − V𝑓 𝐴
− 12 𝑓wall,𝑔𝐷 𝜌𝑔V𝑔 V𝑔 𝛼𝑔𝐴,

(3)

𝜕𝜕𝑡 (𝛼𝑓𝜌𝑓V𝑓𝐴) + 𝜕𝜕𝑥 (𝛼𝑓𝜌𝑓V2𝑓𝐴) = −𝛼𝑓𝐴𝜕𝑃𝑓𝜕𝑥
+ (𝑃int − 𝑃𝑓)𝐴𝜕𝛼𝑓𝜕𝑥 + 𝛼𝑓𝜌𝑓𝑔𝑥𝐴 − Γ𝑔Vint𝐴
+ 18𝜌𝑐𝐶𝑖𝐷𝐴 int (V𝑔 − V𝑓) V𝑔 − V𝑓 𝐴
− 12 𝑓wall,𝑓𝐷 𝜌𝑓V𝑓 V𝑓 𝛼𝑓𝐴,

(4)

𝜕𝜕𝑡 (𝛼𝑔𝜌𝑔𝑈𝑔) + 1𝐴 𝜕𝜕𝑥 (𝛼𝑔𝜌𝑔𝑈𝑔V𝑔𝐴)
+ 1𝐴𝑃𝑔 𝜕𝜕𝑥 (𝛼𝑔V𝑔𝐴) = −𝑃int 𝜕𝛼𝑔𝜕𝑡

+ (𝑃𝑔 − 𝑃int) V𝑔 𝜕𝛼𝑔𝜕𝑥 + Γ𝑔 (V𝑔 − Vint)
2

2
+ 𝐻𝑖𝑔 (𝑇𝑠 − 𝑇𝑔) + Γ𝑔ℎ∗𝑔 + 12 𝑓wall,𝑔𝐷 𝜌𝑔V2𝑔 V𝑔 𝛼𝑔,

(5)

𝜕𝜕𝑡 (𝛼𝑓𝜌𝑓𝑈𝑓) + 1𝐴 𝜕𝜕𝑥 (𝛼𝑓𝜌𝑓𝑈𝑓V𝑓𝐴)
+ 1𝐴𝑃𝑓 𝜕𝜕𝑥 (𝛼𝑓V𝑓𝐴) = −𝑃int 𝜕𝛼𝑓𝜕𝑡
+ (𝑃𝑓 − 𝑃int) V𝑓 𝜕𝛼𝑓𝜕𝑥 − Γ𝑔 (V𝑓 − Vint)

2

2
+ 𝐻𝑖𝑓 (𝑇𝑠 − 𝑇𝑓) − Γ𝑔ℎ∗𝑓 + 12 𝑓wall,𝑘𝐷 𝜌𝑓V2𝑓 V𝑓 𝛼𝑓,

(6)

𝐴𝜕𝛼𝑔𝜕𝑡 + 𝐴Vint 𝜕𝛼𝑔𝜕𝑥 = 𝐴𝜇 (𝑃𝑔 − 𝑃𝑓) + 𝐴 Γ𝑔𝜌int . (7)

The gas and liquid volume fractions 𝛼𝑔 and 𝛼𝑓 are related by
the saturation constraint 𝛼𝑔 + 𝛼𝑓 = 1; the pressure relaxation
coefficient 𝜇 stands for the relaxation rate at which the
phase pressures equilibrate. As derived in [8], the interfacial
pressure and velocity are, respectively, determined by

𝑃int = 𝑍𝑓𝑃𝑔 + 𝑍𝑔𝑃𝑓𝑍𝑓 + 𝑍𝑔
+ sgn(𝜕𝛼𝑓𝜕𝑥 ) 𝑍𝑓𝑍𝑔𝑍𝑓 + 𝑍𝑔 (V𝑔 − V𝑓) ,

Vint = 𝑍𝑓V𝑓 + 𝑍𝑔V𝑔𝑍𝑓 + 𝑍𝑔 + sgn(𝜕𝛼𝑓𝜕𝑥 ) 𝑃𝑔 − 𝑃𝑓𝑍𝑓 + 𝑍𝑔

(8)

in which𝑍𝑘 = 𝜌𝑘𝑐𝑘.Thepressure relaxation coefficient can be
expressed in the following form (see [22, 23, 46]):

𝜇 = 1𝜏𝑃
𝛼𝑓𝛼𝑔𝑃𝑓 + 𝑃𝑔 , (9)

where 𝜏𝑃 is the pressure relaxation time (s). Here we chose
an empirical constant 𝜏𝑃 = 8.5 × 10−5 s and the numerical
results in this paper show reasonable agreement with the
exact/analytical solutions. The net interfacial mass transfer
per unit volume can be calculated by [3, 37, 47]

Γ𝑔 = −𝐻𝑖𝑔 (𝑇𝑠 − 𝑇𝑔) + 𝐻𝑖𝑓 (𝑇𝑠 − 𝑇𝑓)ℎ∗𝑔 − ℎ∗𝑓 . (10)

3. Numerical Scheme

In this paper, the finite volume method based on the stag-
gered mesh is used to discretize seven conservation equa-
tions of the two-pressure model and the semi-implicit solu-
tion algorithm using high-resolution TVD schemes is devel-
oped to solve such two-pressure model. Figure 1 shows the
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Figure 1: Schematic diagram of the staggered mesh.

staggered mesh schematic. Based on the staggered mesh, the
scalar variables such as phasic pressures 𝑃𝑘, specific internal
energies𝑈𝑘, phasic temperatures 𝑇𝑘, and phasic volume frac-
tions 𝛼𝑘 are described at the volume centers and the vector
quantities (velocities V𝑘) are defined at the volume edges.

3.1. High-Resolution TVD Scheme. Using the convection
flux 𝜕(𝛼𝑘𝜌𝑘V𝑘𝐴)/𝜕𝑥 of phasic mass conservation equations
and the convection flux 𝜕(𝛼𝑘𝜌𝑘𝑈𝑘V𝑘𝐴)/𝜕𝑥 of phasic energy
conservation equations as examples, these convection fluxes
can be, respectively, discretized as
𝜕𝜕𝑥 (𝛼𝑘𝜌𝑘V𝑘𝐴)

𝐿
= (�̇�𝑛𝑘,𝑗+1 ̇𝜌𝑛𝑘,𝑗+1) V𝑛+1𝑘,𝑗+1𝐴𝑗+1 − (�̇�𝑛𝑘,𝑗 ̇𝜌𝑛𝑘,𝑗) V𝑛+1𝑘,𝑗 𝐴𝑗Δ𝑥 ,
𝜕𝜕𝑥 (𝛼𝑘𝜌𝑘𝑈𝑘V𝑘𝐴)

𝐿
= (�̇�𝑛𝑘,𝑗+1 ̇𝜌𝑛𝑘,𝑗+1�̇�𝑛𝑘,𝑗+1) V𝑛+1𝑘,𝑗+1𝐴𝑗+1 − (�̇�𝑛𝑘,𝑗 ̇𝜌𝑛𝑘,𝑗�̇�𝑛𝑘,𝑗) V𝑛+1𝑘,𝑗 𝐴𝑗Δ𝑥 .

(11)

It should be noted that the terms 𝑃𝑘(𝜕/𝜕𝑥)(𝛼𝑘V𝑘𝐴) and (𝑃𝑘 −𝑃int)V𝑘(𝜕𝛼𝑘/𝜕𝑥) in energy equations are treated similarly to
the convection flux. Order of accuracy for spatial discretiza-
tion depends significantly on the scheme to calculate the
donor quantities with an overdot in numerically evaluated
fluxes. There are many numerical methods calculating these
quantities; one of the most effective methods is to construct
flux limiters based on total variation diminishing (TVD).
In this paper, the traditional 1st-order upwind scheme and
standard high-order schemes are also discussed for the
comparisons with high-resolution flux limiter schemes.

For a donor quantity ̇𝜙 (this can be �̇�, ̇𝜌, �̇� ̇𝜌, or �̇� ̇𝜌�̇�), the
numerically evaluated general form can be written as [32, 47]

̇𝜙𝑛𝑗 =
{{{{{{{{{{{

𝜙𝐾𝑛 + Δ𝑥𝐾2 𝜓 (𝑟) (𝜕𝜙𝜕𝑥)
𝑛

𝑗−1

, if V𝑗 > 0
𝜙𝐿𝑛 − Δ𝑥𝐿2 𝜓 (𝑟) (𝜕𝜙𝜕𝑥)

𝑛

𝑗+1

, otherwise
(12)

in which 𝜓(𝑟) is termed the flux limiter function and the
gradient ratio is given by

𝑟 =
{{{{{{{{{{{{{{{

(𝜕𝜙/𝜕𝑥)𝑛𝑗(𝜕𝜙/𝜕𝑥)𝑛𝑗−1 , if V𝑗 > 0
(𝜕𝜙/𝜕𝑥)𝑛𝑗(𝜕𝜙/𝜕𝑥)𝑛𝑗+1 , otherwise.

(13)

Let 𝜓(𝑟) = 0; the traditional 1st-order upwind scheme (FOU)
can be obtained from (12).

̇𝜙𝑛𝑗 = {{{
𝜙𝐾𝑛, if V𝑗 > 0𝜙𝐿𝑛, otherwise. (14)

Though FOU scheme is a monotone scheme avoiding non-
physical numerical oscillations, the scheme is of 1st-order
accuracy and has significant numerical diffusion resulting in
relatively large spatial discretization error.This will be shown
in Section 4.

Let the limiter function𝜓(𝑟) be a linear unbounded func-
tion; standard high-order linear schemes can be derived from
(12), as summarized in Table 1.

These linear schemes are of at least 2nd-order accuracy,
reducing numerical diffusion effectively, but often lead to
unphysical spatial oscillations for the case of sharp gradients
which will be shown in the next section.

Let the limiter function 𝜓(𝑟) be a bounded function;
many researchers [32] have proposed monotonic high-reso-
lution schemes which satisfy TVD [48]; here eight flux
limiters are selected, as Table 2 shows.

These bounded flux limiter functions are illustrated in
Figure 2. All the limiter schemes in Table 2 fulfill TVD and
preserve monotonicity to avoid unphysical numerical oscil-
lations under the circumstance of steep gradients. Hereinto,
Minmod is the lower bound of second-order TVD region
and Superbee is upper bound of second-order TVD region.
SMART, Koren, and MUSCL are bounded standard high-
order schemes such as QUICK, third-order upwind scheme,
and Fromm’s scheme.Harmonic, OSPRE, andVanAlbada are
symmetric polynomial-ratio schemes.



www.manaraa.com

Science and Technology of Nuclear Installations 5

Table 1: Standard high-order linear schemes for the case of uniform meshes.

Scheme name Limiter function Reconstructed variable Property

Central-difference
scheme (CD) 𝑟 ̇𝜙𝑛𝑗 = 𝜙𝐾𝑛 + 𝜙𝐿𝑛2 2nd-order accuracy

QUICK
3𝑟 + 14 ̇𝜙𝑛𝑗 = {{{{{{{

𝜙𝐾𝑛 + 𝜙𝐿𝑛2 − 18 (𝜙𝐿𝑛 − 2𝜙𝐾𝑛 + 𝜙𝐾−1𝑛), if V𝑗 > 0
𝜙𝐾𝑛 + 𝜙𝐿𝑛2 − 18 (𝜙𝐾𝑛 − 2𝜙𝐿𝑛 + 𝜙𝐿+1𝑛), otherwise

2nd-order accuracy

Third-order upwind
scheme (TOU)

2𝑟 + 13 ̇𝜙𝑛𝑗 = {{{{{{{
𝜙𝐾𝑛 + 𝜙𝐿𝑛2 − 16 (𝜙𝐿𝑛 − 2𝜙𝐾𝑛 + 𝜙𝐾−1𝑛), if V𝑗 > 0
𝜙𝐾𝑛 + 𝜙𝐿𝑛2 − 16 (𝜙𝐾𝑛 − 2𝜙𝐿𝑛 + 𝜙𝐿+1𝑛), otherwise

3rd-order accuracy

Fromm scheme
𝑟 + 12 ̇𝜙𝑛𝑗 = {{{{{{{

𝜙𝐾𝑛 + 𝜙𝐿𝑛2 − 14 (𝜙𝐿𝑛 − 2𝜙𝐾𝑛 + 𝜙𝐾−1𝑛), if V𝑗 > 0
𝜙𝐾𝑛 + 𝜙𝐿𝑛2 − 14 (𝜙𝐾𝑛 − 2𝜙𝐿𝑛 + 𝜙𝐿+1𝑛), otherwise

2nd-order accuracy

Second-order upwind
scheme (SOU) 1 ̇𝜙𝑛𝑗 = {{{{{{{

3𝜙𝐾𝑛 − 𝜙𝐾−1𝑛2 , if V𝑗 > 0
3𝜙𝐿𝑛 − 𝜙𝐿+1𝑛2 , otherwise

2nd-order accuracy

3.2. Semi-Implicit Scheme. RELAP5 code uses some numeri-
cal convenient set to overcome serious numerical instabilities
associated with gas/liquid phase appearance and disappear-
ance when solving the six-equation single-pressure model
[3]. These numerical challenges arise from the degeneration
of the model to the single-phase case or opposite resulting
in a singular equation system. Similar to RELAP5 [3], for
dealing with numerical challenges in phase appearance and
disappearance in solving the advanced two-pressure model,
mass and momentum conservation equations (1)–(4) are
rearranged into sum and difference equation forms and the
time derivative terms in conservation equations (1)–(6) are
expanded in this numerical scheme.

Such semi-implicit scheme is achieved by treating implic-
itly phasic velocities in mass and energy conservation equa-
tions, pressure gradient in momentum conservation equa-
tions, and all interfacial exchange terms in conservation
equations and all the rest terms are treated effectively at
the new time [49, 50]. The time advancement for all con-
servation equations (1)–(7) is achieved by the first-order
approximation. Superscripts “𝑛” and “𝑛 + 1” in the following
discretization equations denote the old and new time step,
respectively, and subscripts containing “𝐾, 𝐿” determine the
spatial position of scalar variables and subscripts contain-
ing “𝑗” determine the spatial position of vector variables;
the variables with a dot are donor quantities calculated
from (12); the variables with an overtilde are the inter-
mediate new time variables that will be corrected in the
final.

Expanding the time derivative in phasic mass con-
servation equations (1) and (2) and adding these two
expanded mass conservation equations yield the sum mass

conservation equation. The corresponding finite discretiza-
tion equation in the control volume 𝐿 can be modeled as

𝑉𝐿 [𝛼𝑛𝑔,𝐿 (𝜌𝑛+1𝑔,𝐿 − 𝜌𝑛𝑔,𝐿) + 𝛼𝑛𝑓,𝐿 (𝜌𝑛+1𝑓,𝐿 − 𝜌𝑛𝑓,𝐿)
+ (𝜌𝑛𝑔,𝐿 − 𝜌𝑛𝑓,𝐿) (�̃�𝑛+1𝑔,𝐿 − 𝛼𝑛𝑔,𝐿)]
+ (�̇�𝑛𝑔,𝑗+1 ̇𝜌𝑛𝑔,𝑗+1V𝑛+1𝑔,𝑗+1𝐴𝑗+1 − �̇�𝑛𝑔,𝑗 ̇𝜌𝑛𝑔,𝑗V𝑛+1𝑔,𝑗 𝐴𝑗) Δ𝑡
+ (�̇�𝑛𝑓,𝑗+1 ̇𝜌𝑛𝑓,𝑗+1V𝑛+1𝑓,𝑗+1𝐴𝑗+1 − �̇�𝑛𝑓,𝑗 ̇𝜌𝑛𝑓,𝑗V𝑛+1𝑓,𝑗 𝐴𝑗) Δ𝑡 = 0

(15)

In the same way, expanding the time derivative in the mass
conservation equations (1) and (2), subtracting these two
expanded mass conservation equations, and substituting (10)
for Γ𝑔 yield the difference mass conservation equation. The
finite discretization form of the difference mass conservation
equation can be given by

𝑉𝐿 [𝛼𝑛𝑔,𝐿 (𝜌𝑛+1𝑔,𝐿 − 𝜌𝑛𝑔,𝐿) − 𝛼𝑛𝑓,𝐿 (𝜌𝑛+1𝑓,𝐿 − 𝜌𝑛𝑓,𝐿)
+ (𝜌𝑛𝑔,𝐿 + 𝜌𝑛𝑓,𝐿) (�̃�𝑛+1𝑔,𝐿 − 𝛼𝑛𝑔,𝐿)]
+ (�̇�𝑛𝑔,𝑗+1 ̇𝜌𝑛𝑔,𝑗+1V𝑛+1𝑔,𝑗+1𝐴𝑗+1 − �̇�𝑛𝑔,𝑗 ̇𝜌𝑛𝑔,𝑗V𝑛+1𝑔,𝑗 𝐴𝑗) Δ𝑡
− (�̇�𝑛𝑓,𝑗+1 ̇𝜌𝑛𝑓,𝑗+1V𝑛+1𝑓,𝑗+1𝐴𝑗+1 − �̇�𝑛𝑓,𝑗 ̇𝜌𝑛𝑓,𝑗V𝑛+1𝑓,𝑗 𝐴𝑗) Δ𝑡
= −( 2ℎ∗𝑔 − ℎ∗𝑓)

𝑛

𝐿

𝑉𝐿Δ𝑡 [𝐻𝑛𝑖𝑔,𝐿 (�̃�𝑠,𝑛+1𝐿 − �̃�𝑛+1𝑔,𝐿 )
+ 𝐻𝑛𝑖𝑓,𝐿 (�̃�𝑠,𝑛+1𝐿 − �̃�𝑛+1𝑓,𝐿 )] .

(16)
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Table 2: Flux limiter scheme based on TVD.

Limiter name Limiter function Property

Minmod max [0,min (𝑟, 1)] Lower bound of second-order TVD region [48],
bounded central-difference, and second-order

upwind scheme
Superbee max [0,min (2𝑟, 1) ,min (𝑟, 2)] Upper bound of second-order TVD region [48]

Harmonic
𝑟 + |𝑟||𝑟| + 1 Symmetric polynomial-ratio scheme

OSPRE
3𝑟(𝑟 + 1)2(𝑟2 + 𝑟 + 1) Symmetric polynomial-ratio scheme

Van Albada 𝑟(𝑟 + 1)(𝑟2 + 1) Symmetric polynomial-ratio scheme

SMART max [0,min (2𝑟, 34 𝑟 + 14 , 2)] Bounded QUICK scheme

Koren max [0,min (2𝑟, 23 𝑟 + 13 , 2)] Bounded third-order upwind scheme

MUSCL max [0,min(2𝑟, 𝑟 + 12 , 2)] Bounded Fromm’s scheme

Minmod
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OSPRE

Van Albada
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Koren
MUSCL
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Figure 2: Nonlinear flux limiter functions.

By substituting (10) for Γ𝑔, the finite difference equation for
the volume fraction transport equation (7) reads

(�̃�𝑛+1𝑔,𝐿 − 𝛼𝑛𝑔,𝐿)𝑉𝐿 + [V𝑛+1int,𝑗+1𝐴𝑗+! (𝛼𝑛𝑔,𝑗+1 − �̇�𝑛𝑔,𝐿)
− V𝑛+1int,𝑗𝐴𝑗 (𝛼𝑛𝑔,𝑗 − �̇�𝑛𝑔,𝐿)] Δ𝑡 = 𝜇𝐿𝑉𝐿Δ𝑡 (𝑃𝑛+1𝑔,𝐿
− 𝑃𝑛+1𝑓,𝐿 ) + 1𝜌𝑛int
⋅ 𝑉𝐿Δ𝑡 [−( 1ℎ∗𝑔 − ℎ∗𝑓)

𝑛

𝐿

𝐻𝑛𝑖𝑔,𝐿 (�̃�𝑠,𝑛+1𝐿 − �̃�𝑛+1𝑔,𝐿 )
− ( 1ℎ∗𝑔 − ℎ∗𝑓)

𝑛

𝐿

𝐻𝑛𝑖𝑓,𝐿 (�̃�𝑠,𝑛+1𝐿 − �̃�𝑛+1𝑓,𝐿 )] .

(17)

The expanded forms of the gas energy equation are defined
by expanding the time derivative in gas energy equation (5)
and substituting (10). The finite discretization form for the
expanded gas energy equation is

𝑉𝐿 [(𝜌𝑛𝑔,𝐿𝑈𝑛𝑔,𝐿 + 𝑃𝑛int,𝐿) (�̃�𝑛+1𝑔,𝐿 − 𝛼𝑛𝑔,𝐿)
+ 𝛼𝑛𝑔,𝐿𝑈𝑛𝑔,𝐿 (𝜌𝑛+1𝑔,𝐿 − 𝜌𝑛𝑔,𝐿) + 𝛼𝑛𝑔,𝐿𝜌𝑛𝑔,𝐿 (�̃�𝑛+1𝑔,𝐿 − 𝑈𝑛𝑔,𝐿)]
+ [�̇�𝑛𝑔,𝑗+1 ( ̇𝜌𝑛𝑔,𝑗+1�̇�𝑛𝑔,𝑗+1 + 𝑃𝑛𝑔,𝐿) V𝑛+1𝑔,𝑗+1𝐴𝑗+1
− �̇�𝑛𝑔,𝑗 ( ̇𝜌𝑛𝑔,𝑗�̇�𝑛𝑔,𝑗 + 𝑃𝑛𝑔,𝐿) V𝑛+1𝑔,𝑗 𝐴𝑗] Δ𝑡 = (𝑃𝑛𝑔,𝐿 − 𝑃𝑛int,𝐿)
⋅ (�̇�𝑛𝑔,𝑗+1 − 𝛼𝑛𝑔,𝐿) V𝑛+1𝑔,𝑗+1𝐴𝑗+1Δ𝑡 − (𝑃𝑛𝑔,𝐿 − 𝑃𝑛int,𝐿) (�̇�𝑛𝑔,𝑗
− 𝛼𝑛𝑔,𝐿) V𝑛+1𝑔,𝑗 𝐴𝑗Δ𝑡
+ {{{−(

ℎ∗𝑓ℎ∗𝑔 − ℎ∗𝑓)
𝑛

𝐿

𝐻𝑛𝑖𝑔,𝐿 (�̃�𝑠,𝑛+1𝐿 − �̃�𝑛+1𝑔,𝐿 )

− ( ℎ∗𝑔ℎ∗𝑔 − ℎ∗𝑓)
𝑛

𝐿

𝐻𝑛𝑖𝑓,𝐿 (�̃�𝑠,𝑛+1𝐿 − �̃�𝑛+1𝑓,𝐿 )

+ Γ𝑛𝑔,𝐿((V𝑔 − Vint)
2

2 )
𝑛

𝐿

+ (12 𝑓wall,𝑔𝐷 𝜌𝑔V2𝑔 V𝑔 𝛼𝑔)
𝑛

𝐿

}}}𝑉𝐿Δ𝑡.

(18)

Expanding the time derivative in liquid energy equation
(6) and substituting (10) yield the expanded liquid energy
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equation. The finite discretization form for the expanded
liquid energy equation is expressed as

𝑉𝐿 [− (𝜌𝑛𝑓,𝐿𝑈𝑛𝑓,𝐿 + 𝑃𝑛int,𝐿) (�̃�𝑛+1𝑔,𝐿 − 𝛼𝑛𝑔,𝐿)
+ 𝛼𝑛𝑓,𝐿𝑈𝑛𝑓,𝐿 (𝜌𝑛+1𝑓,𝐿 − 𝜌𝑛𝑓,𝐿) + 𝛼𝑛𝑓,𝐿𝜌𝑛𝑓,𝐿 (�̃�𝑛+1𝑓,𝐿 − 𝑈𝑛𝑓,𝐿)]
+ [�̇�𝑛𝑓,𝑗+1 ( ̇𝜌𝑛𝑓,𝑗+1�̇�𝑛𝑓,𝑗+1 + 𝑃𝑛𝑓,𝐿) V𝑛+1𝑓,𝑗+1𝐴𝑗+1
− �̇�𝑛𝑓,𝑗 ( ̇𝜌𝑛𝑓,𝑗�̇�𝑛𝑓,𝑗 + 𝑃𝑛𝑓,𝐿) V𝑛+1𝑓,𝑗 𝐴𝑗] Δ𝑡 = (𝑃𝑛𝑓,𝐿 − 𝑃𝑛int,𝐿)
⋅ (�̇�𝑛𝑓,𝑗+1 − 𝛼𝑛𝑓,𝐿) V𝑛+1𝑓,𝑗+1𝐴𝑗+1Δ𝑡 − (𝑃𝑛𝑓,𝐿 − 𝑃𝑛int,𝐿) (�̇�𝑛𝑓,𝑗
− 𝛼𝑛𝑓,𝐿) V𝑛+1𝑓,𝑗 𝐴𝑗Δ𝑡
+ {{{(

ℎ∗𝑓ℎ∗𝑔 − ℎ∗𝑓)
𝑛

𝐿

𝐻𝑛𝑖𝑔,𝐿 (�̃�𝑠,𝑛+1𝐿 − �̃�𝑛+1𝑔,𝐿 )
+ ( ℎ∗𝑔ℎ∗𝑔 − ℎ∗𝑓)

𝑛

𝐿

𝐻𝑛𝑖𝑓,𝐿 (�̃�𝑠,𝑛+1𝐿 − �̃�𝑛+1𝑓,𝐿 )

− Γ𝑛𝑔,𝐿((V𝑓 − Vint)
2

2 )
𝑛

𝐿

+ (12 𝑓𝑤𝑎𝑙𝑙,𝑘𝐷 𝜌𝑓V2𝑓 V𝑓 𝛼𝑓)𝑛
𝐿

}}}𝑉𝐿Δ𝑡.

(19)

Momentum equations (3)-(4) are firstly rearranged into the
expanded forms by substituting mass conservation equations
(1)-(2).

𝛼𝑔𝜌𝑔𝐴𝜕V𝑔𝜕𝑡 + 𝛼𝑔𝜌𝑔V𝑔𝐴𝜕V𝑔𝜕𝑥
= −𝛼𝑔𝐴𝜕𝑃𝑔𝜕𝑥 + (𝑃int − 𝑃𝑔)𝐴𝜕𝛼𝑔𝜕𝑥 + 𝛼𝑔𝜌𝑔𝑔𝑥𝐴
+ Γ𝑔 (Vint − V𝑔)𝐴
− 18𝜌𝑐𝐶𝑖𝐷𝐴 int (V𝑔 − V𝑓) V𝑔 − V𝑓 𝐴
− 12 𝑓wall,𝑔𝐷 𝜌𝑔V𝑔 V𝑔 𝛼𝑔𝐴,

(20)

𝛼𝑓𝜌𝑓𝐴𝜕V𝑓𝜕𝑡 + 𝛼𝑓𝜌𝑓V𝑓𝐴𝜕V𝑓𝜕𝑥
= −𝛼𝑓𝐴𝜕𝑃𝑓𝜕𝑥 + (𝑃int − 𝑃𝑓)𝐴𝜕𝛼𝑓𝜕𝑥 + 𝛼𝑓𝜌𝑓𝑔𝑥𝐴
− Γ𝑔 (Vint − V𝑓)𝐴
+ 18𝜌𝑐𝐶𝑖𝐷𝐴 int (V𝑔 − V𝑓) V𝑔 − V𝑓 𝐴
− 12 𝑓wall,𝑓𝐷 𝜌𝑓V𝑓 V𝑓 𝛼𝑓𝐴.

(21)

Adding (20) and (21) yields the sum momentum equation.
The sum momentum equation can be converted into the
following discretization form.

(𝛼𝑔𝜌𝑔)𝑛𝑗 (V𝑛+1𝑔 − V𝑛𝑔)𝑗 Δ𝑥𝑗 + (𝛼𝑓𝜌𝑓)𝑛𝑗 (V𝑛+1𝑓 − V𝑛𝑓)𝑗 Δ𝑥𝑗
+ 12 (𝛼𝑔𝜌𝑔)𝑛𝑗 [(V2𝑔)𝑛𝐿 − (V2𝑔)𝑛𝐾] Δ𝑡 + 12 (𝛼𝑓𝜌𝑓)𝑛𝑗
⋅ [(V2𝑓)𝑛𝐿 − (V2𝑓)𝑛𝐾] Δ𝑡 = − (𝛼𝑛𝑔,𝐿𝑃𝑛+1𝑔,𝐿 − 𝛼𝑛𝑔,𝐾𝑃𝑛+1𝑔,𝐾 ) Δ𝑡
− (𝛼𝑛𝑓,𝐿𝑃𝑛+1𝑓,𝐿 − 𝛼𝑛𝑓,𝐾𝑃𝑛+1𝑓,𝐾 ) Δ𝑡 + [(𝜌𝑚)𝑛𝑗 𝑔𝑥
− (12 𝑓wall,𝑔𝐷 𝜌𝑔𝛼𝑔 V𝑔)

𝑛

𝑗

(V𝑔)𝑛+1𝑗
− (12 𝑓wall,𝑓𝐷 𝜌𝑓𝛼𝑓 V𝑓)

𝑛

𝑗

(V𝑓)𝑛+1𝑗
− (Γ𝑔)𝑛𝑗 (V𝑔 − V𝑓)𝑛+1𝑗 ]Δ𝑥𝑗Δ𝑡.

(22)

The difference momentum equation is obtained by dividing
gas momentum equation (20) by 𝛼𝑔𝜌𝑔𝐴 and dividing liquid
momentum equation (21) by 𝛼𝑓𝜌𝑓𝐴, respectively, and sub-
tracting them.Thefinite difference equation for the difference
momentum equation can be written as

[(V𝑛+1𝑔 − V𝑛𝑔) − (V𝑛+1𝑓 − V𝑛𝑓)]𝑗 Δ𝑥𝑗 + 12 [(V2𝑔)𝑛𝐿
− (V2𝑔)𝑛𝐾] Δ𝑡 − 12 [(V2𝑓)𝑛𝐿 − (V2𝑓)𝑛𝐾] Δ𝑡 = −( 1𝜌𝑔)

𝑛

𝑗

⋅ (𝑃𝑛+1𝑔,𝐿 − 𝑃𝑛+1𝑔,𝐾 ) Δ𝑡 + ( 1𝜌𝑓)
𝑛

𝑗

(𝑃𝑛+1𝑓,𝐿 − 𝑃𝑛+1𝑓,𝐾 ) Δ𝑡
+ ( 1𝛼𝑔𝜌𝑔)

𝑛

𝑗

Δ𝑡 [(𝑃𝑛+1int,𝐿 − 𝑃𝑛+1𝑔,𝐿 ) (𝛼𝑛𝑔,𝐿 − 𝛼𝑛𝑔,𝑗)
− (𝑃𝑛+1int,𝐾 − 𝑃𝑛+1𝑔,𝐾 ) (𝛼𝑛𝑔,𝐾 − 𝛼𝑛𝑔,𝑗)] − ( 1𝛼𝑓𝜌𝑓)

𝑛

𝑗

⋅ Δ𝑡 [(𝑃𝑛+1int,𝐿 − 𝑃𝑛+1𝑓,𝐿 ) (𝛼𝑛𝑓,𝐿 − 𝛼𝑛𝑓,𝑗)
− (𝑃𝑛+1int,𝐾 − 𝑃𝑛+1𝑓,𝐾 ) (𝛼𝑛𝑓,𝐾 − 𝛼𝑛𝑓,𝑗)]
− {{{{{
(12 𝑓wall,𝑔𝐷 V𝑔)

𝑛

𝑗

(V𝑔)𝑛+1𝑗
− (12 𝑓wall,𝑓𝐷 V𝑓)

𝑛

𝑗

(V𝑓)𝑛+1𝑗
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− [[
Γ𝑛𝑔 (𝜌𝑛𝑚V𝑛+1int − 𝛼𝑛𝑓𝜌𝑛𝑓V𝑛+1𝑔 − 𝛼𝑛𝑔𝜌𝑛𝑔V𝑛+1𝑓 )(𝛼𝑔𝜌𝑔 𝛼𝑓𝜌𝑓)𝑛 ]]𝑗

+ ( 𝜌𝑚𝛼𝑔𝜌𝑔 𝛼𝑓𝜌𝑓 ⋅ 18𝜌𝑐𝐶𝑖𝐷𝐴 int
V𝑔 − V𝑓)

𝑛

𝑗

⋅ (V𝑛+1𝑔 − V𝑛+1𝑓 )𝑗}}}}}
Δ𝑥𝑗Δ𝑡.

(23)

A variable with an overbar is calculated as an averaged quan-
tity in the following.

𝜙𝑗 = 𝜙𝐾Δ𝑥𝐾 + 𝜙𝐿Δ𝑥𝐿Δ𝑥𝐾 + Δ𝑥𝐿 . (24)

In order to close the system, equations of state for water
properties are supplemented. The properties are based on
IAPWS IF-97. In this paper, phasic densities and temperatures
are provided as functions of phasic pressures or/and phasic
specific internal energies and the linearized equations of state
are given as

𝜌𝑛+1𝑔,𝐿 = 𝜌𝑛𝑔,𝐿 + (𝜕𝜌𝑔𝜕𝑃𝑔)
𝑛

𝐿

(𝑃𝑛+1𝑔,𝐿 − 𝑃𝑛𝑔,𝐿)
+ ( 𝜕𝜌𝑔𝜕𝑈𝑔)

𝑛

𝐿

(�̃�𝑛+1𝑔,𝐿 − 𝑈𝑛𝑔,𝐿) ,
𝜌𝑛+1𝑓,𝐿 = 𝜌𝑛𝑓,𝐿 + (𝜕𝜌𝑓𝜕𝑃𝑓)

𝑛

𝐿

(𝑃𝑛+1𝑓,𝐿 − 𝑃𝑛𝑓,𝐿)
+ ( 𝜕𝜌𝑓𝜕𝑈𝑓)

𝑛

𝐿

(�̃�𝑛+1𝑓,𝐿 − 𝑈𝑛𝑓,𝐿) ,
�̃�𝑛+1𝑔,𝐿 = 𝑇𝑛𝑔,𝐿 + (𝜕𝑇𝑔𝜕𝑃𝑔)

𝑛

𝐿

(𝑃𝑛+1𝑔,𝐿 − 𝑃𝑛𝑔,𝐿)
+ ( 𝜕𝑇𝑔𝜕𝑈𝑔)

𝑛

𝐿

(�̃�𝑛+1𝑔,𝐿 − 𝑈𝑛𝑔,𝐿) ,
�̃�𝑛+1𝑓,𝐿 = 𝑇𝑛𝑓,𝐿 + (𝜕𝑇𝑓𝜕𝑃𝑓)

𝑛

𝐿

(𝑃𝑛+1𝑓,𝐿 − 𝑃𝑛𝑓,𝐿)
+ ( 𝜕𝑇𝑓𝜕𝑈𝑓)

𝑛

𝐿

(�̃�𝑛+1𝑓,𝐿 − 𝑈𝑛𝑓,𝐿) ,
�̃�𝑠,𝑛+1𝐿 = 𝑇𝑠,𝑛𝐿 + ( 𝜕𝑇𝑠𝜕𝑃int)

𝑛

𝐿

(𝑃𝑛+1int,𝐿 − 𝑃𝑛int,𝐿) .

(25)

On substituting directly (25) into these seven discretiza-
tion equations (15)–(19) and (22)-(23), seven discretization
equations correspond to seven unknown solution variables
(𝛼𝑔, 𝑃𝑔, 𝑃𝑓, 𝑈𝑔, 𝑈𝑓, V𝑔, and V𝑓). For a system containing 𝑁
volumes, these seven discretization equations form a 7𝑁

linear algebraic equation set with 7𝑁 unknown solution vari-
ables which can be solved by Gauss elimination solver [51].
The intermediate new time variables �̃�𝑛+1𝑔 , �̃�𝑛+1𝑓 , and �̃�𝑛+1𝑔 are
solved by expanded time derivative forms of conservation
equations such that there are linearization errors in these
solutions. To alleviate these errors, the final 𝑈𝑛+1𝑔 , 𝑈𝑛+1𝑓 , and𝛼𝑛+1𝑔 are solved again by unexpanded forms of mass and
energy conservation equations where �̃�𝑛+1𝑔 , �̃�𝑛+1𝑓 , and �̃�𝑛+1𝑔
are used for evaluation of the source terms of conservation
equations, similar to RELAP5 [49].

4. Numerical Test

In this section, the water faucet problem is simulated to assess
the proposed solution scheme based on two-pressure model.
Here, high-resolutionTVD schemes are implemented in such
scheme to demonstrate the high-order of spatial accuracy.
For comparisons, results from traditional 1st-order upwind
scheme and classical high-order linear schemes are shown.

4.1. Water Faucet Problem. The water faucet problem pro-
posed by Ransom [52] is one of the most important bench-
mark tests for validating the ability of numerical scheme to
calculate two-phase flows. The geometric configuration is a
vertical tube of 12m in length with the diameter of 1m. Ini-
tially, the tube is composed of a uniform annulus of gas with
initial velocity V𝑔,initial = 0m/s and a surrounded uniform
column of water with initial velocity V𝑓,initial = 10m/s.The
initial gas volume fraction is 0.2 and all the initial phasic
pressures are set to 0.1MPa. The wall and interfacial drags
are ignored and no phase transition is assumed; then the flow
goes down driven by the gravity. A schematic diagram of
the time evolution for this water faucet problem is shown in
Figure 3. Based on the above initial conditions and assump-
tions, analytical solutions for the gas volume fraction and
liquid velocity distribution with time along the pipe length
direction have been obtained and are given in the following
[53, 54].

𝛼𝑔 (𝑥, 𝑡)
= {{{{{{{

1 − (1 − 𝛼𝑔,initial) V𝑓,initial√V2𝑓,initial + 2𝑔𝑥𝑥 , 𝑥 ≤ V𝑓,initial𝑡 + 𝑔𝑥 𝑡22
𝛼𝑔,initial, otherwise,

(26)

V𝑓 (𝑥, 𝑡) = {{{{{
√V2𝑓,initial + 2𝑔𝑥𝑥, 𝑥 ≤ V𝑓,initial𝑡 + 𝑔𝑥 𝑡22
V𝑓,initial + 𝑔𝑥𝑡, otherwise. (27)

The gravity accelerates the rate of the liquid; then the
liquid column becomes thinner with time; there is a moving
discontinuity in the profile (see Figure 3), where it is a very
important region for testing the accuracy of the numerical
scheme and its stability near discontinuities.

All the following numerical results are calculated using a
fixed initial liquid Courant number of CFL𝑓 = 0.2. Numerical
simulations using the classical FOU scheme are performed
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Figure 3: Illustration of the time evolution for the faucet flow prob-
lem.
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Figure 4: Gas volume fraction comparison between analytical
solutions and numerical solutions from FOU scheme with 96 cells
and 192 cells at time of 0.2, 0.5, and 0.75 seconds.

first. Figure 4 shows results of gas volume fraction distribu-
tion with 96 cells and 192 cells at times 0.2, 0.5, and 0.75 s.
This figure illustrates the numerical stability to handle discon-
tinuities and the numerical results are excellently consistent
with the corresponding analytical solutions except the near
discontinuities (𝑥 = V𝑓,initial𝑡 + 𝑔𝑥𝑡2/2). The difference near
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Figure 5: Numerical results from FOU scheme with 96 cells
of liquid velocity compared with analytical results at time of 0.2, 0.5,
and 0.75 seconds.

discontinuities between numerical and analytical solutions is
caused by the numerical diffusion from the FOU scheme. As
shown in this figure, the numerical results with 192 cells are
more accurate than those with 96 cells which means that
the finer the grid is, the smaller the numerical diffusion
is. However finer meshes require more computation time
and decrease the efficiency; high-order schemes are needed
to reduce numerical errors more effectively. The numerical
results with 96 cells of liquid velocity distribution are pre-
sented in Figure 5. It can be observed that the calculated
liquid velocities are in very good agreement with the corre-
sponding analytical solutions such that the calculated results
with 192 cells are not given in this figure.

Furthermore, finer grid FOU resolutions ranging from
384 to 1152 cells are studied with single-pressure model and
two-pressure model, as shown in Figures 6 and 7, and the
comparisons of them are shown in Figure 8. For the case
of 1152 cells, numerical solutions of single-pressure model
show a big undershoot at the discontinuity which is due to
the nature of ill-posedness. As compared to single-pressure
model, numerical solutions of two-pressure model are more
stable under the same conditions.

Secondly, numerical simulations using standard high-
order linear schemes (Table 1) are performed with 96 cells.
Figure 9 shows the gas volume fraction distribution using
standard high-order linear schemes at 0.75 s. For the compar-
isons, the result from FOU scheme is also shown in the figure
(dash line). It is observed that, as compared to FOU scheme,
standard high-order linear schemes reduce the numerical
dissipation effectively and TOU scheme seems to be more
accurate than other standard high-order linear schemes due
to its 3rd-order precision. But unphysical oscillation occurs
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Figure 6: Numerical results of gas volume fraction using single-
pressure model and FOU scheme with finer cells at time of 0.5
seconds.
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Figure 7: Numerical results of gas volume fraction using two-
pressure model and FOU scheme with finer cells at time of 0.5
seconds.

near discontinuities in some schemes (TOU, Fromm, CD,
and SOU scheme). This oscillation can be explained by
Godunov’s order barrier theorem [33] which states that
linear unbounded high-order schemes used to solve the
advection equation are not monotonic, allowing unphysical
oscillations under some circumstances such as this case of
discontinuities. To achieve monotonic high-order schemes,
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Figure 8: Gas volume fraction comparison between single-pressure
model and two-pressure model with FOU scheme and finer cells at
time of 0.5 seconds.
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Figure 9: Gas volume fraction comparison between analytical
solutions and numerical solutions using standard high-order linear
schemes with 96 cells at time of 0.75 seconds.

constructing bounded flux limiters based on TVD is one of
the most effective methods. Some flux limiters are piecewise-
linear functions constructed from bounded standard high-
order linear schemes without compromising their high-order
precision as shown in Figure 9.
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Figure 10: Gas volume fraction comparison between analytical
solutions and numerical solutions using high-resolution TVD
schemes with 96 cells at time of 0.75 seconds.

Finally, eight high-resolution TVD schemes in Table 2
are analyzed with 96 cells. Figure 10 shows the gas volume
fraction distribution using high-resolution TVD schemes at
0.75 s and results for various high-resolution TVD schemes
are presented in Figure 11, respectively. All of the flux limiter
schemes have effectively reduced numerical diffusion and
improved the prediction of gas volume fraction. As expected,
when compared to unstable results from unbounded SOU,
TOU, CD, and Fromm scheme, the corresponding bounded
TVD schemes Minmod, Koren, and MUSCL produce sta-
ble and more accurate results. Among all the flux limiter
schemes,Minmod performs worst to reduce numerical diffu-
sion at the discontinuity point 𝑥 = V𝑓,initial𝑡 + 𝑔𝑥𝑡2/2. Results
from Superbee seem to be more accurate than those from the
other seven schemes at the discontinuity point.

In order to analyze the order of accuracy of considered
high-resolution schemes, L1 norm of errors between the
numerical results and exact solutions on gas volume fraction
is assessed and given as

𝐿1 (𝛼) = 1𝑁
𝑁∑
𝑖=1

𝛼𝑔,numerical (𝑥𝑖) − 𝛼𝑔,exact (𝑥𝑖) , (28)

where 𝑁 is the number of control volumes in the domain;
here 𝑁 = 96; 𝛼numerical(𝑥𝑖) is the numerical solution at 𝑥𝑖
and 𝛼exact(𝑥𝑖) is the exact solution from (26) at 𝑥𝑖. Table 3
shows the order of decreasing accuracy for the TVD schemes.
Obviously, Superbee is the most accurate scheme while Min-
mod is more smeared than other schemes. Koren performs
the second best due to a bounded third-order upwind scheme
based on TVD.

Table 3: Order of accuracy for the TVD scheme.

Limiter name L1 error
Superbee 0.00605
Koren 0.007609
MUSCL 0.008085
SMART 0.008143
Harmonic 0.009161
OSPRE 0.00948
Van Albada 0.009977
Minmod 0.011765
FOU 0.02383

5. Conclusions

In this paper, a semi-implicit numerical algorithm based on
the finite volume method associated with staggered grids
has been developed to solve the advanced well-posed two-
fluid seven-equation two-pressure model. To overcome the
challenge of excessive numerical diffusion fromFOU scheme,
eight high-resolution TVD schemes are implemented in such
numerical algorithm to improve spatial accuracy. Then such
new numerical algorithm is validated on the water faucet test,
demonstrating high-order spatial accuracy of TVD schemes
and robustness near discontinuities. Numerical comparisons
reveal that Superbee and Koren give two highest levels of
accuracy while Minmod seems to be the worst scheme as
compared to other schemes. This research will lay the foun-
dation for more accurately simulating two-phase flows based
on the two-pressure model with higher fidelity algorithm.

Nomenclature

Symbol

𝜌𝑔: Gas density (kg⋅m−3)𝜌𝑓: Liquid density (kg⋅m−3)
V𝑔: Gas velocity (m⋅s−1)
V𝑓: Liquid velocity (m⋅s−1)𝐴: The cross-sectional area in

the pipeline (m2)Γ𝑔: The net gas-liquid mass transfer
per unit volume (kg⋅m−3⋅s−1)𝑃𝑔: Gas pressure (Pa)𝑃𝑓: Liquid pressure (Pa)𝑃int: Interfacial pressure (Pa)𝑔𝑥: The gravity acceleration (m⋅s−2)

Vint: The interfacial velocity (m⋅s−1)𝑓wall,𝑘: The wall friction coefficient for phase 𝑘𝐷: The hydraulic diameter (m)𝐴 int: The interfacial area between two phases
per unit volume (m−1)𝜌𝑐: The continuous phase density (kg⋅m−3)𝐶𝑖𝐷: The interfacial drag coefficient between
two phases
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Figure 11: Numerical solutions of gas volume fraction for various high-resolution TVD schemes at time of 0.75 seconds.
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𝑈𝑔: Vapor/gas specific internal energy (J⋅kg−1)𝑈𝑓: Liquid specific internal energy (J⋅kg−1)𝐻𝑖𝑔: Interface-to-gas convective heat transfer
coefficient per unit volume (W⋅m−3⋅K−1)𝐻𝑖𝑓: Interface-to-liquid convective
heat transfer coefficient per unit
volume (W⋅m−3⋅K−1)𝑇𝑘: Temperature for phase 𝑘 (K)𝑇𝑠: The saturation temperature under
the interfacial pressure 𝑃int (K)ℎ∗𝑔 : The gas specific enthalpy evaluated at the
interfacial mass transfer condition (J⋅kg−1)ℎ∗𝑓: The liquid specific enthalpy
evaluated at the interfacial mass
transfer condition (J⋅kg−1)𝜇: The pressure relaxation
coefficient function (Pa−1⋅s−1)𝜌int: The interfacial density
corresponding to the liquid saturated
density with 𝑃int (kg⋅m−3)𝑍𝑘: The phase 𝑘 acoustic
impedance (kg⋅m−2⋅s−1)𝑐𝑘: The phase 𝑘 sound velocity (m⋅s−1)Δ𝑥: The length of the control volume (m)𝑉𝐿: Volume of the control cell 𝐿 (m3)𝑁: Number of control volumes in a system.

Subscript/Superscript

𝑔: Gas phase𝑓: Liquid phase
int: Phasic interface𝑘: Gas phase (𝑔) or liquid phase (𝑓)
Initial: Initial condition.
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